
Rounding Techniques in Approximation Algorithms

Lecture 11: Iterative Rounding for Network Design
Lecturer: Nathan Klein

1 Iterative Rounding

Before we jump into the problem, let’s again recall our key fact for this set of lectures: given any
LP with n variables, we can find an optimal solution that is the unique solution to a subsystem of
n linearly independent constraints met with equality, Ãx = b̃.

Last time, we used this in a very basic way. We showed that if there are few non-trivial
constraints (i.e. constraints that are not of the form 0 ≤ xi or xi ≤ 1), then there are few fractional
variables. In this lecture, our LP will have exponentially many constraints. At first glance, this
looks like an issue for this approach, since it feels like surely we can build a large rank collection
of constraints from our exponential set.

The key in this lecture will be that the n linearly independent constraints must all be tight at
our vertex and linearly independent. We will show that in our problem, in fact, the rank of the set
of tight constraints cannot be too large. This turns out to be the rule rather than the exception,
and we can often expect the rank of these systems to not be very large.

We will use this to prove that we can iteratively find a large coordinate i in any vertex and
round it to 1. More formally:

Iterative Rounding

Consider a covering problem over {0, 1}n with (potentially exponentially many) constraints
of the form aTx ≥ b for a ∈ Rn

≥0, b ≥ 0 with a separation oracle for the resulting poly-
tope P. Now, prove that for some k, for any vertex x of P, there is some variable i with xi ≥ 1

k .

Given this fact, we can iteratively round up an element with xi ≥ 1
k to 1, and add the

constraint xi = 1 to the LP permanently. We then re-solve our LP with this constraint (we
know the LP is still feasible since it’s a covering problem) and continue until our solution is
integral. This leads to a k-approximation as we prove below.

We are continually paying a factor of k to translate a fractional coordinate to an integral one,
so intuitively, our approximation ratio shouldn’t be worse than k. Nevertheless, we write out the
proof formally.

Lemma 1.1. So long as we can prove there is some variable with xi ≥ 1
k in any vertex x for a covering

problem, we can obtain a k-approximation.

Proof. Let x be the initial vertex solution to the LP. We will obtain a sequence of vertex solutions
x0, . . . , xn so that x0 = x and xn is integral. At each step j, we will constrain all integral coordinates
of xj−1 to be integral1 for xj as well as add a new constraint xi = 1 for some i. Let I(x) be the cost

1Technically, this is not necessary and so is not included in the formal description of iterative rounding. However it
can only speed up the algorithm and leads to a slightly more general proof, so we do so here.

1

of the integral coordinates of a vector x and F(x) be the cost of the fractional coordinates. We will
prove that at each step j ≥ 1,

I(xj) + k · F(xj) ≤ I(xj−1) + k · F(xj−1)

So, since F(xn) = 0, we will have:

c(xn) = I(xn) ≤ I(xn−1) + k · F(xn−1) ≤ · · · ≤ I(x0) + k · F(x0) ≤ k · c(x)

As desired. So let’s prove the claim. At step j, we are taking a variable xi ≥ 1
k and rounding

it to 1. Consider the point y which is simply xj−1 with the ith coordinate rounded to 1. Then,
I(y) = I(xj−1) + ci and F(y) = F(xj−1)− 1

k ci. So,

I(y) + k · F(y) ≤ I(xj−1) + ci + k ·
(

F(xj−1)− 1
k

ci

)
= I(xj−1) + k · F(xj−1)

However, c(xj) ≤ c(y) since y was a feasible solution to the LP with the added constraint xi = 1
(as we have a packing problem) and xj is the cheapest solution to the resulting LP. In addition,
I(xj) ≥ I(y), implying F(xj) ≤ F(y). So,

I(xj) + k · F(xj) ≤ I(y) + F(y) + (k − 1) · F(xj) ≤ I(y) + k · F(y) ≤ I(xj−1) + k · F(xj−1),

as desired.

1.1 Survivable Network Design

As input, we are given a graph G = (V, E), weights ce ≥ 0 on each edge, and a connectivity
requirement ru,v ∈ Z≥0 for each vertex pair u, v. Our goal is to output the cheapest F ⊆ E so that
each pair of vertices u, v has connectivity at least ru,v. This is called a "survivable" network since
each u, v are still connected after an arbitrary ru,v − 1 edge deletions.

Let f : 2V → Z≥0 be defined as f (S) = maxu∈S,v ̸∈S{ru,v}. Then, we can write our polytope for
this problem as follows:

Pf =

{
x(δ(S)) ≥ f (S) ∀S ⊆ V
0 ≤ xe ≤ 1 e ∈ E

(1)

It turns out that this function f is skew supermodular. This means that for all S, T ⊆ V, we have
either f (S) + f (T) ≤ f (S ∪ T) + f (S ∩ T) or f (S) + f (T) ≤ f (S ∖ T) + f (T ∖ S). This is not
difficult to prove, so we leave it as an exercise. Remember that for a supermodular function,
the first inequality must always hold. Also, note that f (S) = k for any fixed integer k is skew
supermodular. In fact, both inequalities always hold with equality. So, this is a generalization of
the k-edge-connectivity problem.

The main theorem of this section is as follows, which leads to a 2-approximation for the
survivable network design problem. This was first proved by Jain [Jai01].

Theorem 1.2. Whenever f is a skew supermodular function, every vertex of Pf with 0 < xe < 1 for all
e ∈ E has a coordinate e with xe ≥ 1

2 .

2

Before we prove this theorem, we will give a description of the set of tight constraints at any
vertex. Note that a laminar family is a collection of sets L over a ground set V such that for any
S, T ∈ L, we have S ∩ T ∈ {S, T, ∅} (this is called intersecting). Typically, when we are working
with cuts, we will fix a vertex r and have r lie outside all of the sets. This makes the "side" of each
cut we are using unambiguous. Two cuts are crossing if S ∩ T ̸= ∅, S ∪ T ̸= V, S ∖ T ̸= ∅ and
T ∖ S ̸= ∅. Excluding a root r is convenient because if S, T intersect and both do not contain r,
then they cross.

We will need to use a particular property of the cut function.

Lemma 1.3. Suppose S, T cross. Then,

χ(δ(S)) + χ(δ(T)) = χ(δ(S ∪ T)) + χ(δ(S ∩ T)) + 2E(S ∖ T, T ∖ S)

χ(δ(S)) + χ(δ(T)) = χ(δ(S ∖ T)) + χ(δ(T ∖ S)) + 2E(S ∩ T, V ∖ (S ∪ T))

You can convince yourself of this with a picture! Now we can prove our structural lemma,
which is typically known as uncrossing:

Lemma 1.4 (Uncrossing). Let f be skew supermodular, and let x be a vertex of Pf such that 0 < xe < 1
for all e ∈ E. Then, there is a laminar family L ⊆ 2V∖{r} (where we exclude an arbitrary root vertex r)
such that:

1. x(δ(S)) = f (S) for all S ∈ L and the vectors {χ(δ(S)) | S ∈ L} are linearly independent

2. {χ(δ(S)) | S ∈ L} spans all tight constraints of x, and

3. |E| = |L|

Proof. Let L be a maximal laminar family of linearly independent tight constraints of x. In other
words, to construct L, greedily add sets which does not violate the laminarity of L and are not
linearly dependent with the existing sets in L. Clearly, (1) holds. We will show that (2) holds,
which immediately implies (3) by the rank lemma.

So, take any set S for which x(δ(S)) = f (S) that is not in the span of L and minimizes the
number of sets T ∈ L that it intersects. Since S ̸∈ L, by maximality of L there must be some T ∈ L
that it intersects. Now, by skew supermodularity, we have either f (S)+ f (T) ≤ f (S∪T)+ f (S∩T)
or f (S) + f (T) ≤ f (S ∖ T) + f (T ∖ S). Let’s assume the former holds as the latter case is similar.
So,

x(δ(S)) + x(δ(T)) = f (S) + f (T) ≤ f (S ∪ T) + f (S ∩ T) ≤ x(δ(S ∪ T)) + x(δ(S ∩ T))

But by submodularity of the cut function (or just Lemma 1.3, which also clearly holds for weighted
graphs), the first term is also greater than the first term. So, all of the above must be equalities, in
particular implying x(δ(S)) + x(δ(T)) = x(δ(S ∪ T)) + x(δ(S ∩ T)). However, by Lemma 1.3 this
implies that χ(δ(S)) + χ(δ(T)) = χ(δ(S ∪ T)) + χ(δ(S ∩ T)).

This means that either δ(S ∪ T) or δ(S ∩ T) is not in the span of L. This is a contradiction,
since S ∪ T and S ∩ T are both tight sets that intersect fewer sets than S. In Fact 1.5 we will show
this for S ∪ T (the other case is analogous).

Fact 1.5. If S intersects T ∈ L, then S ∪ T intersects strictly fewer sets in L.

3

Proof. We will show that if a set R ∈ L does not intersect S, it also does not intersect S ∪ T, which
would imply the claim since S ∪ T does not intersect T. By assumption, R ∩ S ∈ {S, R, ∅}, and
since L is laminar, R ∩ T ∈ {T, R, ∅}. We now want to show that R ∩ (S ∪ T) ∈ {R, S ∪ T, ∅}.

R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T) ∈ {S ∪ T, S ∪ R, R, ∅}. So we only need to show that we
cannot have R ∩ S = S and R ∩ T = R. But this would imply T ⊆ R ⊆ S which contradicts that T
intersects S.

Given this lemma, we can complete the proof of the theorem, where we use an argument from
Chekuri and Rukkanchanunt [CR18] simplifying that of [Jai01].

Theorem 1.2. Whenever f is a skew supermodular function, every vertex of Pf with 0 < xe < 1 for all
e ∈ E has a coordinate e with xe ≥ 1

2 .

Proof. Suppose by way of contradiction that 0 < xe <
1
2 for all e ∈ E. We will now give a splittable

token to each edge and assign tokens to sets in L such that every set gets one token and there is
some token left over. This contradicts (3) of Lemma 1.4.

For an edge e = (u, v), let L be the minimal set in L containing u and R the minimal set in L
containing v. Assign xe tokens to each of L and R. Let T be the smallest set containing both u and
v, and assign the remaining 1 − 2xe tokens to T. Note that these sets are not necessarily distinct.

Now consider any set S in L. Suppose it has k maximal children S1, . . . , Sk ∈ L (note possibly
k = 0). Let A be the set of edges in δ(S) with no endpoint in a child Si, let B be the set of edges
with one endpoint in exactly one Si and two endpoints in S, and C be the set of edges with an
endpoint in two distinct Si. S receives tokens from each of A, B, C. Let’s sum them up:

x(A) + |B| − x(B) + |C| − 2x(C) = |B|+ |C|+ x(δ(S))−
k

∑
i=1

x(δ(S))

= |B|+ |C|+ f (S)−
k

∑
i=1

f (Si)

This is certainly non-negative because all token assignments are positive. So, S receives an
integer number of tokens! It only remains to prove that it does not receive 0. It receives a
non-zero amount of tokens from all edges in A, B and C, so it receives 0 tokens if and only if
A ∪ B ∪ C = ∅. However, if this occurs then S is linearly dependent with its children, we we
would have χ(δ(S)) = ∑k

i=1 χ(δ(Si)). Thus every set in L gets at least one token.
To obtain the contradiction we must have a leftover token. This follows from the fact that

any edge in δ(S) for a maximal set S ∈ L has no corresponding set T (and there is at least one
maximal set).

Finally, we have to address the fact that we needed 0 < xe < 1. We can delete the edges with
xe = 0, but the edges with xe = 1 are not as clear. It does not make sense to contract these edges,
since that would drastically change the underlying graph.

The solution is to delete the edges with xe = 1, put them in our solution F, and then modify
the function f . In particular, we set f ′(S) = f (S) − |δ(S) ∩ F|. But |δ(S) ∩ F| is simply a cut
function for some graph with edges F, so it is symmetric submodular. It only remains to show the
following:

Lemma 1.6. Let f be a skew supermodular function and g a symmetric submodular function. Then f − g
is a skew supermodular function.

4

Proof. Consider any S, T. Then suppose we have f (S) + f (T) ≤ f (S ∪ T) + f (S ∩ T), as the other
case is similar using that g is symmetric submodular. We want to show the same holds for f − g:

(f − g)(S) + (f − g)(T) = f (S) + f (T)− g(S)− g(T)
≤ f (S ∪ T) + f (S ∩ T)− g(S ∪ T)− g(T ∩ T)
= (f − g)(S ∪ T) + (f − g)(S ∩ T)

As desired.

References

[CR18] Chandra Chekuri and Thapanapong Rukkanchanunt. “A note on iterated rounding for
the Survivable Network Design Problem”. In: Symposium on Simplicity in Algorithms. 2018
(cit. on p. 4).

[Jai01] Kamal Jain. “A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem”. In: Combinatorica 21 (2001), pp. 39–60 (cit. on pp. 2, 4).

5

	Iterative Rounding
	Survivable Network Design

